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Abstract

Computational models of protein folding and ligand docking are large and complex. Few systematic methods have yet been developed to
optimize the parameters in such models. We describe here an iterative parameter optimization strategy that is based on minimizing a
structural error measure by descent in parameter space. At the start, we know the ‘correct’ native structure that we want the model to produce,
and an initial set of parameters representing the relative strengths of interactions between the amino acids. The parameters are changed
systematically until the model native structure converges as closely as possible to the correct native structure. As a test, we apply this
parameter optimization method to the recently developed Gaussian model of protein folding: each amino acid is represented as a bead and all
bonds, covalent and noncovalent, are represented by Hooke’s law springs. We show that even though the Gaussian model has continuous
degrees of freedom, parameters can be chosen to cause its ground state to be identical to that of Go-type lattice models, for which the global
ground states are known. Parameters for a more realistic protein model can also be obtained to produce structures close to the real native

structures in the protein database. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Computer algorithms that aim to predict the native struc-
ture of a protein from its amino acid sequence do not yet
have adequate speed or accuracy. And they are usually
subject to a type of irreproducibility, whereby local kinetic
trapping leads to different predicted structures even for the
same amino acid sequence, under the same conditions, with
the same parameters.

If a folding algorithm had sufficient reproducibility and
speed, however, it would be possible to systematically
improve its accuracy. Rosen et al. have recently shown
that a global minimization method for finding the lowest
energy conformations in folding models can serve as a
basis for optimizing the parameters of the model [1].
Here, we develop a related approach to finding optimal
parameters for folding and docking models, also based on
having a reproducible minimizer, but here taken from a
beads-and-springs model of protein folding.
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One folding model that is fast and has a reproducible
minimization strategy is the Gaussian model of protein
folding [2]. In the Gaussian model, each amino acid is
represented as a single bead and all bonds-covalent or non-
covalent-are represented by Hooke’s law springs. The
parameters in the model are the spring constants. Because
all the interactions are simple spring laws, the minimum
energy conformation can be computed quickly and reprodu-
cibly for any set of spring constants. In this paper, we
develop a method for optimizing parameters and we apply
it to the Gaussian model of folding. First, we describe the
Gaussian model, then the optimization method, and finally
we show that it succeeds in finding parameters that give
globally optimal conformations for an HP-type lattice
model and then for a more realistic continuous protein
model with 210 parameters.

2. The Gaussian model of protein folding

A protein molecule is modeled as a linear chain of
n beads. The position of the ith bead relative to a fixed
laboratory frame is R;. The instantaneous configuration of
the chain is given by the matrix R of bead coordinates as
R = col[R{,R>, ..., R,] with R; = (x;,y;,2;) (R, = (x;,y;) in
two-dimensions). The beads are subject to covalent bond
potentials between neighboring beads along the chain and
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to non-bonded interactions with other beads. Both covalent
and nonbonded potentials are modeled using linear springs.
The covalent bonds are represented by attractive springs that
tend to shrink the bond length to zero. Since springs have
zero equilibrium bond lengths, such interactions would tend
to shrink the protein to a point. In order to prevent this, a
mean-field repulsive potential is superimposed on the
system that fixes the moment of inertia of the protein at a
fixed value, I,. The energy of the chain is represented by

ER) = > ayR —R[. e

1=i<j=n
Let I'" be the matrix with entries
a; fori #j
Vi = —Za,-k fori=j’ @
K

where a;s are the spring constants for the interaction
between ith and jth beads. It is convenient to introduce the
vectors, X = col[xy,xs,...,X,], Y =col[y;,y2, ..., ), Z =
col[zy,23,...,2,] so that R=[X,Y,Z]. The energy can
then be written as E(R) = E(X,Y,Z) = X'I'X + Y'TY +
Z"T'Z. To find the minimum energy state, we look for the
configuration R = [X,Y,Z] that minimizes the energy,
under the constraint

XX XY XZ
R'R=|XY YY YZ|=1I,
XZ YZ 11

Under an orthonormal change of coordinates, correspond-
ing to a unitary transformation U of the space the energy is
invariant but the moment of inertia I, changes to ULU". We
choose the transformation U that diagonalizes the constraint

XX XY XZ ai 0 0
XY YY YZ|=]0 & o
XZ YZ Z1Z 0 & &

with a% = a% = oz% > (0. Placing the origin at the center of
mass of R, we aim to minimization E(R) = X'I'X +
Y'TY + ZTFZ, subject to the constraints

=D w=>zu=0 (3)
k=i k=i k=i

n n

2 _ 2 2 _ 2
Zxk_ah Z)’k—az,
k=1 k=1

n

2 2
D % = a,
k=1

n n n (4)
D> xk =D xzu=» wzx =0.
k=1 k=1 k=1
The solution is related to the eigenvalue problem
T —ADR=0. Q)

Since I' is positive Eq. (5) has n real eigenvalues, 0 =

Ao <A = A = = A,_. We denote by {R;}, the corre-
sponding orthonormal set of eigenvectors. The eigenvector
Ry = nillz[l, 1,..., I]T corresponding to Ay = 0 is redun-
dant due to the first constraint in Eq. (3). From Bessel’s
inequality and a convexity argument, it follows that the
minimum energy E, = ajA; + anA, + a3A; is reached
when

Ry = [a|R, ®»R;, asR;]. (6)

3. The parameter optimization scheme

In this section, we describe a method for optimizing para-
meters. Our initial set of parameters in the Gaussian model
is a set of spring constants a;. We are given the correct
native structure of the protein and our aim is to change
the spring constants so that the minimum energy structure
of the model is as close as possible to the correct native
structure.

Let us first assume that the elements of the I" matrix are
differentiable functions of a scalar parameter €. Later in this
section we will replace € by the spring constants a;. I' =
I'(e) is an nXn self-adjoint matrix, differentiable with
respect to €. We denote by A;(e), and Ri(e) j = 1,2,...,n,
the eigenvalues and normalized eigenfunctions. By the
implicit function theorem, these will also be differentiable
except for singular values. For a fixed i, differentiating
Eq. (5) ('(e) — Ai(e)D)R;(€) = 0 we get

(C(€e) = A(©DRi(e) + (I'(e) — A (DR (€) = 0. @)

The coefficient (I'(e) — A;e)I) of Ri(e) above is singular.
Nevertheless, since|R;(€)] = 1, Ri(e)-R,(e) = 0; so R;(e)
has no component in the direction of Ri(€). When A (€) is
not a multiple eigenvalue, we can invert the matrix
(I'(e) — Ai(e)I) on the subspace orthogonal to R;(€). This
gives

Ri(e) = —(T'(e) — Mi(&D) ' (T'(e) — A (DR, (e),

where the ‘inverse’ should be understood in the above sense.
In this case R;(€) can be explicitly written in terms of the
remaining eigenvectors
. R(&'T'(eR
ko = Y RO TOR(O

B iz e — Ao ®)

Note that the term )i,-(e) R/(e) drops out due to
orthogonality. This last equation can be derived from the
orthonormal eigenvector expansions

Ri(&) = > ciRy(e),
k=1

(I'(e) = A i(ODR(e) = > (((€) — A (ODR,(€)-Ry(€)Ry(e).
k=1
©)
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Substituting Eq. (9) into Eq. (1) and solving for the
coefficients c; gives Eq. (8).
In the following sections I' will be taken to be of the form

r=>erl,

with constant matrices I',. The parameters €, will represent
either a single or a group of spring constants. For the two-
dimensional lattice models of Section 4.1 we will take €, =
a;;, the spring constant between the i-th and the j-th beads,
hence v will vary over all pairs 1 =i <j=n. Then I' =
I'; where

1 -1
F,.]:[_l 1] (10)

with 1s at the ii, jj, positions —1’s at the ij and ji positions,
and all of the remaining entries equal zero. In the three-
dimensional protein models €, will depend on the pair of
amino acids interacting; €, = €45 for the amino acid pair
(A, B). In this case the spring constant a; = €,p if the i-th
bead contains the amino acid A and j-th contains B. Then
I', = I'4p is the sum of the corresponding I';s.
With this choice of T', the derivative dI/d€, is

ar

Je,

r, (1)

Through the optimization process, the parameters €,
change, hence the native structure of the chain also changes.
In the present analysis, this change is calculated by using the
Gaussian Model. At each new step, the minimum energy
configuration of the chain is calculated using the new para-
meters, and the new parameters are calculated by minimiz-
ing the distance between the instantaneous configuration
Ry = [o1Ry, ayR;, a3R5] of Eq. (6)) and the known mini-
mum energy configuration N, i.e. the target structure. The
distance between the native configuration and any other
configuration may be expressed in terms of various distance
measures. In the present work we choose the affine
transformation invariant distance d(L,N) between two
configurations L and N, defined as follows:

|det L'N|
d(L,N) = \/ 1 - :
Vdet LTL+/det NTN

This distance is obtained from the inner product (L, N) =
det L'N, which in turn arises from representing L =
[X,Y,Z] by the alternating product X AY AZ. In the
inner product defined above, linear transformations of the
plane act like scalars; to be exact (LT,N) = det T{L, N).
The distance is actually semidefinite; d(L, N) = 0 implies
that N = LT for some nonsingular linear transformation 7.
Moreover for any nonsingular linear transformation 7,
d(LT,N) = d(LL,N). This last property of the affine invar-
iant distance allows us to take a shortcut in our computa-
tions. Instead of the instantaneous configuration R, we
simply take L. = [R;, R,]. For a simpler notation we put X =

(12)

R\, Y=Ry, Z=R; and N = (Xy,Yy,Zy). We can now
differentiate d*(L,N) with respect to L'L=1

Ad*(L,N)
Je, N
_ sign(det L'N)[det[X, Y, Z]" Xy +det[X, Y, Z]" Yy +det[X, Y, Z]Zy]
VdetN'N '

(13)

where the superposed dot denotes differentiation with
respect to €, ie. X = 0X/d¢,, Y = 9Y/de,, Z = 9Z/0e,.
These partial derivatives are computed from Eq. (8), using
Eq. (10) for I'.

Calculations start with the given initial values of each €
and the eigenvectors corresponding to the solution of the
Gaussian model, Eq. (3). Then, the new values of €, are
obtained from the relation
e =€ - h—adz(L’ N )

(14)

14 14
J€,

Here, h is a scaling factor. The new values of €,s from
Eq. (14) are then substituted in Eq. (2) to obtain the new
matrix I', which is then used to solve Eq. (3). Inasmuch as
the distance defined by Eq. (12) is invariant to nonsingular
linear transformations, the structure obtained at the end of
the iterative scheme may be the affinely transformed version
of the native structure. This may suitably be remedied by a
back transform, by postmultiplying L. with 7 where the
latter is given by

Xy X XyY XyZ
XN'Z YN'Z ZN'Z

4. Results and discussion
4.1. Two-dimensional lattice model

For the proof of principle, we first take a simple model in
which beads are either hydrophobic (H) or polar (P). We
consider an HP model: HH and PP pair contacts in the native
structure are connected with springs. Calculations of the
optimized I' matrix are performed as follows: The coordi-
nates of the native configuration and initial values of a; =
€, are given as input. The initial values are chosen as
follows: (1) spring constants for all of the covalent bonds,
are chosen as unity. (2) The spring constants representing
the HH and PP interaction energies are chosen as —¢€;, same
for all HH and PP pairs. (3) Interaction between H and P
units are initially chosen as zero. (4) In order to keep the HH
pairs in the inner part of the protein and the PP pairs in the
outside, a constant energy — ¢ is added to each HH pair and
subtracted from each PP pair. These energy parameters
constitute the starting values that enter the initial I" matrix.
The vector of positions, R, are normalized and expressed



498

Fig. 1. The minimum energy configuration of the 36-mer (see Ref. [2] for
the HP sequence) predicted by the Gaussian model: (a) before, and (b) after
optimization.

with respect to the centroidal coordinate frame.
Minimization is performed according to Eq. (14). The I
matrix is upgraded with the new values of a; and the new
configuration is obtained by solving Eq. (1). This procedure
is repeated until the distance measure given by Eq. (12)
converges to zero.

We have worked out the computations for the 20-mer, the
25-mer and the 36-mer (see Ref. [2]). The configurations
obtained are practically the same as the result obtained by
exact enumeration. Fig. 1a and b show results for the 36-mer
before and after optimization. The entries of optimized T’
matrices are too detailed for reporting here, and are given
for only the 20-mer in Table 1. The starting €, values are
chosen as 0.07, 0.05, and 0.031 for the 20, 25 and 36-mers,
respectively. The starting €, values are chosen as 0.011,
0.02 and 0.00295 for the 20, 25 and 36-mers, respectively.
These initial values are observed to yield fast convergence
to the given structures. The time for computations increased
with the square of the number of beads along the chain.
The final energies obtained at the end of the optimization
procedure are 43.3, 46.2 and 101.

A brief description of some observed average features of
the entries are as follows: The optimized energies of inter-
action depend on the chain length, the energies being higher
for the shorter chains. Also, the energies depend weakly on
the separation between pairs. This is shown in Figs. 2a—c. In

Table 1

3-H 4-P 5-P 6-H 7-H 8-P 9-H 10-P 11-P 12-H 13-P 14-H 15-H 16-P 17-P 18-H 19-P 20-H

2-p

—0.128
—0.061
-0.117
—0.023

—0.040
—0.136
—0.023
—0.057

—0.121
—0.041
—0.070

—0.030
—0.067

—0.030
—0.034

—0.158

—0.061
-0.109

-0.171
—0.062
—0.164
—0.082
—0.088
—0.157
—0.169
—0.031
—0.101

- 0.30
—0.005

—0.147

—0.055

—0.121 —.046

- 0.61

—0.057
- 0.079
—0.141
—0.158

0.041 —0.128 —0.100

0.032
—0.005
—0.998

—0.066
—0.978

—0.988

1-H
2-P
3-H
4-p
5-P
6-H
7-H
8-P
9-H
10-P

0.003
—0.149
—0.083
—0.136
—0.103
—0.184
—0.022
-0.126
—0.016
- 0.996

0.033 0.022

0.077
—0.083

—0.023 0.075
—0.124
—0.015
—0.989

0.047
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0.039

0.032
—0.015
- 0.070
—0.017
-0.110
—0.050
- 0.065
—0.135
—0.189

0.058

0.041
0.021
—0.092

0.000
—0.053
—0.165

—0.032

0.038
—0.976

0.042

0.019
—0.006

0.014

0.041
- 0.029

0.007
- 0.074
—0.017
—=0.111
—0.971

0.072

0.013
—0.165
-0.113
—0.028
—0.090
—0.002
—0.041
—0.079
—-0.014
—0.108
—-0.122

0.004
—0.060

0.056
—-0.114
-0.127

0.020
—0.106
-0.114

0.023
—0.959

0.006
- 0.075

0.050
—0.041

0.097
—0.061

0.090
—0.065
—0.001
— 1.005

0.010
— 1.005

0.002
—0.008

0.056
—0.058

0.021 0.076 0.031

0.045

0.070

0.017
—0.034
—0.139

0.001

0.034
—0.027
- 0.069
- 0971

0.028
- 0.975

0.042
—0.038

0.032
—0.060
—0.017
—0.048
—0.063
—-0.118

0.122
0.056

0.061

0.007
—0.064
—0.982

11-P
12-H

0.093
—0.050

0.007 0.081
-0.117

—0.122

0.011

0.024
—0.973

13—-P

0.022
—0.034

0.048
—0.005
—0.986

0.028
—0.978

14-H
15-H
16-P

0.053

0.031
—0.013
—0.980

0.031
—0.0.997

0.035
—0.065
—0.995

17-P

18-H
19-P
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Fig. 2. The dependence of optimized spring constants on distance between
beads: (a) for 20-mer, (b) 25-mer, and (c) 36-mer.

order to obtain these figures, the abscissa representing the
distance between interacting pairs was divided into small
intervals and the interacting pairs in these intervals were
identified. The mean energy shown in the ordinate repre-
sents the interaction energy of pairs that fall into a given
interval of separation. The optimized values of the energies
for the HH, PP and the HP pairs are shown by the filled and
empty circles and the empty diamonds as indicated in the
legends. The spring constant representing the covalent bond
between consecutive beads on a chain, which are chosen as
unity in the Gaussian model, are not affected much by the
optimization. General distance dependent potentials may
also be used, by properly transforming them to Gaussian
potentials at each step of the iteration.

Fig. 3. Structure of BPTI (dark) calculated from the optimized parameter set
compared with that of the real native structure (white). Rms error is 1.7 A.

4.2. Three-dimensional protein model

The above formulations for a two-dimensional problem
can be easily extended to 3 dimensions and more realistic
models. We represent all the atomic interactions, both cova-
lent and noncovalent, as spring-like forces, and seek the
optimal spring constants so that the lowest-energy structure
for a protein calculated with the spring constants is as close
as possible to the known native structure. We can find the
lowest energy structure L exactly, as described above, and
minimize the distance measure defined in Eq. (11) with the
native structure N taken from the protein database.

We consider a simple model, where each amino acid in a
protein is represented as single bead, and all the covalent
bonds connecting neighboring beads are assumed to have
the same strength. The parameters we aim to optimize are
the spring constants of the nonbonded interactions relative
to the single covalent bond spring constant. We assume that
the strengths of the nonbonded interactions depend on the
types of amino acids that interact, so the total number of
parameters is 210, counting all the possible types of amino
acid pairs. Initial values of the parameters were chosen to be
on the order of 1/100 of the covalent spring constant at the
beginning of the iteration, and the final optimized values
remained about the same order of magnitude.

We first apply this method to the structure of Bovine
Pancreatic Trypsin Inhibitor (BPTI). The structure calcu-
lated from the optimized parameters is compared with the
real native structure in Fig. 3. The parameter optimization
method gives a root mean square error between the two
structures of 1.7 A. This error is, in part, due to the fact
that the number of parameters is about the same as the
degrees of freedom for this protein.

We then optimize parameters for five different proteins
simultaneously by minimizing the sum of squares of the
distance errors of the five proteins. The results are shown
in Fig. 4. In this case, the errors are larger, 3.5 A over the set
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Fig. 4. Structures of five different proteins (dark) calculated from the optimized parameters in the multiple protein optimization compared with their native
structures (white). The PDB identifiers and the rms errors are: (a) 1B40.pdb (3.8 A), (b) 3EBX.pdb (3.8 A), (c) 1BTA.pdb (3.2 A), (d) 1UBILpdb (3.3 A),

(¢) 5PTLpdb (3.5 A).

of all five proteins. We find that the structures have correct
overall topologies, although there are errors in the detailed
local structures. In this case, the number of degrees of
freedom is about five times as large as the number of
parameters, so it is not trivial to get this small error without
the present optimization strategy. The parameter set
obtained by this minimization is shown in Table 2.

The errors grow larger when we optimize 210 parameters
for increasingly larger numbers of proteins at the same time.

This appears to be due to the following limitations of the
present method. Currently, we find only local minima of the
distance measure in the parameter space, so the iteration
method we use does not give the globally optimal parameter
set. Finding the global minimum or a minimum close to the
global minimum is necessary because the dimensionality
of the parameter space is large, so there are very many
local minima. Second, we have fixed the covalent bond
spring strength, so the bond lengths fluctuate in the



Table 2

—4.50 1.63 —0.78 491 3.53 7.27 3.23 0.66 —043 259 —097 —-0.29 0.61 4.03 299 —1.81 032 —123
—4.89
—6.62
—3.04

— 298
—-324

C 4389

> )
o

0.438 1.35 4.17 —0.28 7.89
0.33 238 —4098 0.55 3.55
019 —-632 —283 496 —2.56
0.00 0.18 0.03 1.18 0.10

—-046 —597 4.68 0.88 4.08

—5.48 4.15 —342 1.94

—0.85

—-0.83

—0.71

1.79
- 5.70
2.43
0.48
5.01
1.44

4.71
0.51
2.69
4.83
—7.80
1.05

—4.32 0.28 2.46 4.00 —1.94 2.64 7.37 2.26
375 —279 0.25 12.07 2.95 3.89 7.40 1.28
5.36 3.77 2.57 —6.74 2.55 0.61 4.41 1.43

-0.19 1.18 452 —234 241 0.01 0.77 —3.06 0.51

—9.98 -3.10 245 2.33 1.90 0.69 291 —0.81
—11.1 1.04 9.06 659 —6.69 —022 1.15

- 1.05
8.82
— 848

5.55
- 17.70

4.84
—322

0.22
2.88
0.24
2.57
- 1.78

—2.12

8.64
1.53
5.63
11.54

1.30
4.12
—-2.17

4.86
443

0.42
0.88
2.04
0.76
247
—3.94

5.48
1.63
0.75
—0.28
—6.54

7.68

—2.16

1.33
—-1.92
—1.27

4.69

—8.21

—3.61

2.55
0.41
3.78
1.71
—0.84

4.23
—4.22
—0.95
—0.94

1.73
—-3.29

1.54
—3.55

2.68
—-3385

2.60
3.86
0.96
0.89
—-3.92

3.56
1.45
2.28
1.59
—242

4.61
6.58
—11.0

1.68
—5.78

0.89
0.70
3.81
3.06

4.93

2.61
—0.30
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0.18
1.09
1.42
—1.02
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3.22
0.20
1.21

4.
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4.74
—0.76

2.75

5.17
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predicted structures, making it difficult to achieve accurate
predictions of ordered structures such as alpha-helices.
Fixing the bond lengths (and/or angles) by introducing
quadratic constraints might improve the predictions. This
would require iterative solution for the Lagrange multi-
pliers. Finally, we have used only the very simplest possible
model here with no atomic detail; better models should also
improve the predictions.

5. Conclusions

We have described a method that optimizes many
parameters simultaneously in a protein folding model. In
particular, the model we use is the Gaussian model, in
which monomers are beads, the different types of covalent
and noncovalent interactions are all represented as spring
forces, and the overall size and shape of the molecule is
fixed by a Lagrange multiplier constraint on the radius of
gyration. The advantage of the Gaussian Model is that
forces are linear in displacements so finding the global
minima (native conformation) can easily be handled with
matrix algebra, and thus the parameters can be optimized in
a systematic way. The method begins with an initial config-
uration, and with a target conformation, namely the native
structure to which the sequence is supposed to fold. The
method iteratively computes a series of changes in para-
meters until the lowest energy state of the molecule comes
as close as possible to the native conformation. We illustrate
the method on a few small proteins. For example, for BPTI,
the method finds 210 contact parameters that cause the
predicted native structure to be within about 1.7 A from
the true native state.
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